Determination of Potential Agricultural Conservation Savings (Low End of Range) South Coast

Input Data from DWR

Applied Water 755 (1,000 af)

Depletion 665 (1,000 af)

ET of Applied Water 542 (1,000 af)

Assumptions for Calculations

1. Ave. Leaching Fraction = 14%

2. % lost to Channel Evap/ET ³ = 4%

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

canal lining:
tailwater:
flexibility:
meas/price:

0.5 (adjustment factor0.5 based on region variation2 in water districts)

3.5 (points for this region's districts

0.875 = adjustment factor

29% = district portion

71% = on-farm portion

of 4 points for average)

Calculations from Input Data

(1,000 af)

213 (Diff betw. Applied Water and ETAW)

Total Irrecoverable losses
Total Recoverable losses

Total Existing Losses

123 (Diff betw. Depletion and ETAW)90 (Diff betw. Applied Water and Depletion)

Ratio of Irrecoverable Loss

58% (Irrecov divided by total existing losses)44 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Portion lost to leaching Portion lost to Channel Evap/ET

30 (Applied Water * % lost to Channel Evap/ET)

Total Loss Conservation Potential

139 (Total Existing loss - portion to leaching - portion to channel evap/ET)

Irrecoverable Portion

49 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

Recoverable Portion 90 (Total Existing loss - Irrecoverable Loss Portion)

Incremental Distribution of Conservable Portion of Losses

		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	56	20	36
CALFED Increment =	next 30%	0.30	42	15	27
Remaining =	final 30%	0.30	42	15	27
			139	49	90

Summary of Savings:

Existing Applied Water Use =

755

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		39	30	69
District		16	12	28
Total	213	56	42	97

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		26	19	45
District		10	8	18
Total	90	36	27	63

Potential for Recovering Currently Irrecoverable Losses

(1,000af)		No Action		Total
On-Farm		14	10	24
District		6	4	10
Total	123	20	15	34

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under *No Action*. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.

Determination of Potential Agricultural Conservation Savings (High End of Range) South Coast

Input	Data	from	DWR
-------	------	------	------------

Applied Water	755	(1,000 af)
Depletion	665	(1,000 af)
ET of Applied Water	542	(1,000 af)

Accumptions for Calculations

resourantions for Curediations		
1. Ave. Leaching Fraction =	10%	
•		
2 0/ 1 Ch 1 F /CT 3 -	20/	
2. % lost to Channel Evap/ET 3 =	2%	

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

canai lining:	
tailwater:	
flexibility:	
meas/price:	

0.5 0.5 (adjustment factor based on region variation

in water districts)

Calculations from Input Data

			(1,000)
Tatal	Existing	Loccoc	
LOLAL	EXISUII2	Losses	

213 (Diff betw. Applied Water and ETAW)

of 4 points for average) 0.875 = adjustment factor

Total Irrecoverable losses

123 (Diff betw. Depletion and ETAW)

29% = district portion

3.5 (points for this region's districts

Total Recoverable losses

90 (Diff betw. Applied Water and Depletion)

Ratio of Irrecoverable Loss

58% (Irrecov divided by total existing losses)

71% = on-farm portion

Portion lost to leaching

31 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Portion lost to Channel Evap/ET

15 (Applied Water * % lost to Channel Evap/ET)

Total Loss Conservation Potential

167 (Total Existing loss - portion to leaching - portion to channel evap/ET)

Irrecoverable Portion

77 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

90 (Total Existing loss - Irrecoverable Loss Portion) Recoverable Portion

Incremental Distribution of Conservable Portion of Losses

		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	67	31	36
CALFED Increment =	next 30%	0.30	50	23	27
Remaining =	final 30%	0.30	50	23	27
4			167	77	90

Summary of Savings:

Existing Applied Water Use =

755

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		47	35	82
District	1	19	15	34
Total	213	67	50	117

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		26	19	45
District		10	8	18
Total	90	36	27	63

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		22	16	38
District		9 .	7	16
Total	123	31	23	54

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.